Practical

General Instructions

- This examination has 3 problems.
- Before the start of the practical exam, the READ signal is given. You will have 15 minutes to read the exam booklet. You may only read during this time. Do not write nor use the calculator. Do not work on any problem nor interact with any equipment.
- You may begin working as soon as the START signal is given. You will then have $\mathbf{5}$ hours to complete the exam.
- Each signal is given by the ringing of a cowbell.
- You may do practical work on only P3 first for up to 60 minutes. During this time you will only have access to the chemicals and equipment for P3 which are on your bench. Signals after 50 and 60 minutes will be given.
- Once finished with practical work on P3, raise the technical assistance card. A supervisor will collect all chemicals and equipment used only for P3. Question and answer sheets for P3 will not be collected. After this, you can start working on P1 and P2. The chemicals and equipment for these tasks are stored in the cabinet below your workspace.
- All results and answers must be clearly written in pen in their respective designed areas on the answer sheets. Answers written outside the answer boxes will not be graded. Some figures are reproduced in your question sheets for scratch work. They will not be graded. Make sure to copy your final answer to your answer sheets.
- For the multiple choice questions, if you want to change your answer, shade the check box completely and then make a new box next to it. Mark your intended answer with a check.
- Use only the pen (in Box "P3") and calculator provided.
- The official English version of the exam booklet is available upon request and serves for clarification only.
- Shelves above the benches are not to be used during the task for the purpose of equality.
- You may use the cabinets below your work space to store any material. The cabinets become available after handing in materials for only P3.

Practical

- You must follow the safety rules given in the IChO regulations. Any safety rule violation can result in your dismissal from the laboratory and the nullification of your practical examination.
- Chemicals and labware, unless otherwise noticed, will be refilled or replaced without penalty only for the first incident (one item). Each further incident will result in the deduction of 1 point from your 40 practical exam points.
- Only chemicals listed in a problem may be used to solve that problem. Failure to comply will result in the nullification your practical exam.
- When necessary or instructed to do so, wash your glassware at your workspace. The sinks must not be used for washing glassware.
- The supervisors will announce a 30-minute warning before the STOP signal.
- You must stop your work immediately when the STOP signal is announced. Failure to stop working or writing can lead to nullification of your practical exam.
- After the STOP signal has been given, the lab supervisor will come to sign your answer sheet.
- After both the supervisor and you sign, put all sheets with the cover sheet on top back into the envelope. Do not seal the envelope. Submit it for grading together with your products and thinlayer chromatography (TLC) plates.
- You are not allowed to leave your working place without permission. If you need any assistance, raise the corresponding nonverbal communication card (see table below for meanings).
- Do not draw anything into or close to the QR codes.

Meanings of the non-verbal communication cards.

Practical

Practical

Problems and Grading Information

	Title	Question Pages	Answer Pages	Total Score	Percentage
1	Bleach, a Chameleonic Reagent	10	4	$\mathbf{7 0}$	16
2	Titration Tango	4	4	$\mathbf{9 0}$	13
3	Beauty in Simplicity	2	4	$\mathbf{5 9}$	11
$\mathbf{4 0}$					

Practical

Physical Constants and Equations

Constants

Planck constant	$h=6.626 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}$
Boltzmann constant	$k_{B}=1.381 \cdot 10^{-23} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
Speed of Light	$c=2,99792458 \cdot 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Elementary charge	$e=1.602 \cdot 10^{-19} \mathrm{C}$
Avogadro constant	$N_{A}=6.022 \cdot 10^{23} \mathrm{~mol}^{-1}$
Universal gas constant	$R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
Faraday constant	$F=96485 \mathrm{C} \mathrm{mol}$
Standard pressure	$p_{0}=1 \cdot 10^{5} \mathrm{~Pa}$
Electronvolt	$1 \mathrm{eV}=1.602 \cdot 10^{-19} \mathrm{~J}$
Electric Charge \& Current	$1 \mathrm{C}=1 \mathrm{~A} \cdot 1 \mathrm{~s}$
Absolute zero	$0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$
Angstrom	$1 \AA=10^{-10} \mathrm{~m}$
pico	$1 \mathrm{pm}=10^{-12} \mathrm{~m}$
nano	$1 \mathrm{~nm}=10^{-9} \mathrm{~m}$
micro	$1 \mu \mathrm{~m}=10^{-6} \mathrm{~m}$
milli	$1 \mathrm{~mm}=10^{-3} \mathrm{~m}$
centi	$1 \mathrm{~cm}=10^{-2} \mathrm{~m}$
deci	$1 \mathrm{dm}=10^{-1} \mathrm{~m}$
kilo	$1 \mathrm{~km}=10^{3} \mathrm{~m}$
mega	$1 \mathrm{Mm}=10^{6} \mathrm{~m}$
giga	$1 \mathrm{Gm}=10^{9} \mathrm{~m}$
tera	$1 \mathrm{Tm}=10^{12} \mathrm{~m}$
Pi (π)	$\pi=3.141592 \ldots$
Euler's number	$e=2.718281 \ldots$

Practical

Equations

Ideal gas law	$p V=n R T=N k_{B} T$
Gibbs free energy	$\begin{aligned} & \Delta G=\Delta H-T \Delta S \\ & \Delta G^{\circ}=-R T \ln K^{\circ} \\ & \Delta_{r} G^{\circ}=-n F E_{\text {cell }}^{\circ} \end{aligned}$ where n is the number of electrons $\Delta_{r} G=\Delta_{r} G^{\circ}+R T \ln Q$
Reaction quotient Q for reaction: $a A+b B \rightleftharpoons c C+d D$	$Q=\frac{[C]^{c}[D]^{d}}{[A]^{[}[B]^{\text {b }}}$
Nernst equation	$E=E_{0}-\frac{R T}{n F} \ln Q$
Electric current	$I=Q / t$
Faraday equation	$I \cdot t=n \cdot z \cdot F$
Energy of charge q in electric field	$E=k \frac{q_{1} q_{2}}{d}$
Arrhenius law	$k=A \exp \left(\frac{-E_{A}}{R T}\right)$
Lambert Beer equation	$A=\varepsilon l c$
Henderson-Hasselbalch equation	$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left(\frac{\left[A^{-}\right]}{[H A]}\right)$
Energy of a photon	$E=h \nu=\frac{h c}{\lambda}$
Integrated rate laws for ...	
... zeroth order	$[A]=[A]_{0}-k t$
... first order	$\ln [A]=\ln [A]_{0}-k t$
... second order	$\frac{1}{[A]}=\frac{1}{[A]_{0}}+k t$
Half life for a first order reaction	$t_{1 / 2}=\frac{\ln 2}{k}$
Half life for a second order process	$t_{1 / 2}=\frac{1}{[A]_{0} k}$
Radioactivity	$A=k \cdot N$
Surface area of a sphere with radius R	$A=4 \pi R^{2}$
Volume of a sphere with radius R	$V=\frac{4 \pi}{3} R^{3}$

Practical

Periodic Table of the Elements

Practical

Safety

When in the laboratory students must respect the rules:

- Do not eat or drink in the lab. Chewing gum is not allowed.
- Work only in the designated area. Keep your work area and the common work areas tidy.
- No unauthorized experiments are allowed. No modification of the experiments is allowed.
- Vials and screw capped bottles must be kept closed whenever possible.
- Do not pipette with your mouth. Always use a pipette filler bulb.
- Inform your lab assistant about spills and broken glassware immediately. Inform the assistants about any accident.
- All waste must be properly discarded to prevent contamination or injury. Dispose the solutions in the containers with the correct labels. If any containers is full inform your lab assistant.
- Contact lenses are prohibited in the laboratory.

During the examination, the students will be required to wear:

- pants covering their whole legs;
- closed and flat shoes;
- a lab coat with long sleeves;
- safety goggles fitting the contour of their face;
- if applicable, long hair and beards tied back.

Any student that would fail to respect these rules will not be allowed to enter the lab along with the nullification of their practical exam and exclusion from the practical exam.

Practical

55 ${ }^{\text {TH }}$ INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

English (Official)

GHS Statements

The GHS hazard and precautionary statements associated with the materials used are indicated in the problems. Their meanings are as follows:

H-phrases Physical Hazards

H224: Extremely flammable liquid and vapour

H225: Highly flammable liquid and vapour

H226: Flammable liquid and vapour

H260: In contact with water releases flammable gases which may ignite spontaneously

H272: May intensify fire: oxidizer

H290: May be corrosive to metals

H-phrases Health Hazards

H301: Toxic if swallowed

H301+H331: Toxic if swallowed or if inhaled

H302: Harmful if swallowed

H302+H312: Harmful if swallowed or in contact with skin

H302+H312+H332: Harmful if swallowed, in contact with skin or if inhaled

H302+H332: Harmful if swallowed or inhaled

H304: May be fatal if swallowed and enters airways

H311: Toxic in contact with skin

H311+H331: Toxic in contact with skin or if inhaled

H312: Harmful in contact with skin

Practical

H312+H332: Harmful in contact with skin or if inhaled

H314: Causes severe skin burns and eye damage

H315: Causes skin irritation

H317: May cause an allergic skin reaction

H318: Causes serious eye damage

H319: Causes serious eye irritation

H331: Toxic if inhaled

H332: Harmful if inhaled

H335: May cause respiratory irritation

H336: May cause drowsiness or dizziness

H351: Suspected of causing cancer

H361: Suspected of damaging fertility or the unborn child

H361d: Suspected of damaging the unborn child

H361f: Suspected of damaging fertility

H371: May cause damage to organs

H372: Causes damage to organs through prolonged or repeated exposure

H373: May cause damage to organs through prolonged or repeated exposure

H-phrases Environmental Hazards

H400: Very toxic to aquatic life

H410: Very toxic to aquatic life with long lasting effects

Practical

H411: Toxic to aquatic life with long lasting effects

H412: Harmful to aquatic life with long lasting effects

H441: Very toxic to terrestrial invertebrates

Prevention precautionary statements

P202: Do not handle until all safety precautions have been read and understood.

P210: Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.

P220: Keep/Store away from clothing/.../combustible materials.

P223: Do not allow contact with water.

P231: Handle and store contents under inert gas/...

P232: Protect from moisture.

P233: Keep container tightly closed.

P234: Keep only in original container/packaging.

P235: Keep cool.

P240: Ground and bond container and receiving equipment.

P241: Use explosion-proof electrical/ventilating/light/.../equipment.

P242: Use only non-sparking tools.

P243: Take action to prevent static discharges.

P260: Do not breathe dust/fume/gas/mist/vapours/spray.

P261: Avoid breathing dust/fume/gas/mist/vapours/spray

P264: Wash ... thoroughly after handling.

Practical

55 ${ }^{\text {TH }}$ INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

English (Official)

P270: Do not eat, drink or smoke when using this product.

P271: Use only outdoors or in a well-ventilated area.

P273: Avoid release to the environment.

P280: Wear protective gloves/protective clothing/eye protection/face protection.

Response precautionary statements

P301: IF SWALLOWED:

P301+P310: IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.

P301+P312: IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.

P301+P330+P331: IF SWALLOWED: Rinse mouth. Do NOT induce vomiting.

P302: IF ON SKIN:

P302+P352: IF ON SKIN: Wash with soap and water.

P303: IF ON SKIN (or hair):

P303+P361+P353: IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water [or shower].

P304: IF INHALED:

P304+P340: IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

P305: IF IN EYES:

P305+P351+P338: IF IN EYES: Rinse continuously with water for several minutes. Remove contact lenses if present and easy to do. Continue rinsing.

P308: IF exposed or concerned:

P308+P311: IF exposed or concerned: Call a POISON CENTER or doctor/physician.

Practical

55TH INTERNATIONAL CHEMISTRY OLYMPIAD
SWITZERLAND 2023

P310: Immediately call a POISON CENTER or doctor/physician.

P311: Call a POISON CENTER or doctor/physician.

P312: Call a POISON CENTER or doctor/physician if you feel unwell.

P313: Get medical advice/attention.

P314: Get Medical advice/attention if you feel unwell.

P315: Get immediate medical advice/attention.

P320: Specific treatment is urgent (see ... on this label).

P330: Rinse mouth.

P331: Do NOT induce vomiting.

P332: If skin irritation occurs:

P332+P313: If skin irritation occurs: Get medical advice/attention.

P337: If eye irritation persists:

P337+P313: If eye irritation persists: Get medical advice/attention.

P338: Remove contact lenses if present and easy to do. Continue rinsing.

P340: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

P351: Rinse cautiously with water for several minutes.

P352: Wash with plenty of water.

P353: Rinse skin with water [or shower].

P361: Remove/Take off immediately all contaminated clothing.

P363: Wash contaminated clothing before reuse.

Practical

P370: In case of fire:

P370+P378: In case of fire: Use ... to extinguish.

P378: Use ... to extinguish.

P391: Collect spillage.

Storage precautionary statements

P403: Store in a well ventilated place.

P403+P233: Store in a well ventilated place. Keep container tightly closed.

P403+P235: Store in a well ventilated place. Keep cool.

P405: Store locked up.

P422: Store contents under ...

Disposal precautionary statements

P501: Dispose of contents/container to ...

Practical

List of Chemicals, Glassware, and Equipment

Problem 1: Organic Synthesis: Bleach, a Chameleonic Reagent

Chemical	Labelled as	Comment	GHS Statements
$\mathrm{CH}_{3} \mathbf{C O O H}, 4 \mathrm{~mL}$	"AcOH"	Corrosive	H226, H314; P280, P210, P233, P240, P241, P242, P243, P260, P264, P280, P301+P330+P331, P302+P361+P354, P303+P361+P353, P304+P340, P305+P354+P338, P316, P321, P363, P370+P378, P403+P235, P405, P501
$\begin{aligned} & \text { Eluent } \quad\left(\mathrm{C}_{6} \mathrm{H}_{14} / \mathrm{EtOAc},\right. \\ & 80: 20, \mathrm{v} / \mathrm{v}), 15 \mathrm{~mL} \end{aligned}$	"Eluent"	Flammable	Ethyl Acetate: H225, H319, H336; P210, P233, P240, P241, P242, P243, P261, P264+P265, P271, P280, P303+P361+P353, P304+P340, P305+P351+P338, P319, P337+P317, P370+P378, P403+P233, P403+P235, P405, P501. Hexane: H225, H304, H361f, H373, H315, H336, H411; P203, P210, P233, P240, P241, P242, P243, P260, P261, P264, P271, P273, P280, P301+P316, P302+P352, P303+P361+P353, P304+P340, P318, P319, P321, P331, P332+P317, P362+P364, P370+P378, P391, P403+P233, P403+P235, P405, P501
HCl, 2 M in $\mathrm{H}_{2} \mathrm{O}, 25 \mathrm{~mL}$	"2 M HCl"	Corrosive	$\begin{aligned} & \text { H290, H314, H318, H335; } \\ & \text { P260, P280, P303+P361+P353, } \\ & \text { P305+P351+P338 } \end{aligned}$

Practical

p- Methoxyacetophenone, $2 \times 500 \mathrm{mg}$	$\begin{aligned} & \text { "SM-A" } \\ & \text { "SM-B" } \end{aligned}$		```H302, H315; P264, P270, P280, P301+P317, P302+P352, P321, P330, P332+P317, P362+P364, P501```
$\begin{aligned} & \mathrm{NaHSO}_{3} \text { (ca. } 40 \% \text { in } \mathrm{H}_{2} \mathrm{O} \text {), } \\ & 8 \mathrm{~mL} \end{aligned}$	"NaHSO3 (aq)"		$\begin{aligned} & \text { H302; P264, P270, P301+P317, } \\ & \text { P330, P501 } \end{aligned}$
NaOCl (ca. 14% in $\mathrm{H}_{2} \mathrm{O}$), 7.5 mL for preparation of product A, 4.0 mL for preparation of product B	"Bleach-A" "Bleach-B"	Corrosive	H314, H318, H400, P410; P260, P264, P264+P265, P273, P280, P301+P330+P331, P302+P361+P354, P304+P340, P305+P354+P338, P316, P317, P321, P363, P391, P405, P501
$\mathbf{N a}_{2} \mathbf{S O}_{4}, \mathrm{ca}$.	"Na2SO4"		H315, H318; P264, P264+P265, P280, P302+P352, P305+P354+P338, P317, P321, P332+P317, P362+P364
$\mathrm{C}_{6} \mathbf{H}_{5} \mathrm{CH}_{3}, 40 \mathrm{~mL}$	"Toluene"	Flammable	H225, H304, H315, H336, H361d, H373, H412; P203, P210, P233, P240, P241, P242, P243, P260, P261, P264, P271, P280, P301+P316, P302+P352, P303+P361+P353, P304+P340, P318, P319, P321, P331, P332+P317, P362+P364, P370+P378, P403+P233, P403+P235, P405, P501
Distilled water	"dest. Wasser"		Not hazardous according to Regulation (EC) no. 1272/2008
$\begin{array}{llll} \hline \mathrm{NaOH} \\ 6.7 \mathrm{~mL} & (1 \mathrm{M} & \text { in } & \left.\mathrm{H}_{2} \mathrm{O}\right), \end{array}$	"NaOH (aq)"	Corrosive	H290, H314; P260, P264, P280, P301+P330+P331, P302+P361+P354, P304+P340, P305+P354+P338, P316, P321, P363, P405, P501
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	"Aceton"	Flammable	$\begin{aligned} & \text { H225, H319, H336; P210, P233, } \\ & \text { P240, P241, P242, P305 + P351 } \\ & + \text { P338 } \end{aligned}$

Practical

55 ${ }^{\text {TH }}$ INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Personal equipment	Quantity
Laboratory stand	1
Clamp with clamp holder	4
Magnetic stirrer with hotplate	1
Magnetic stir bar (rod-shaped, 2.5 cm)	2
Magnetic stir bar (olive-shaped, 2 cm long, 1 cm thick)	1
Water bath: crystallization dish (filled $1 / 3$ with water, equiped with 1 magnetic stir bar)	1
Thermometer ($0-100{ }^{\circ} \mathrm{C}$)	1
Round-bottom flask (50 mL)	2
Vigreux column	1
Hose adapter, bent, connected to gas bubbler	1
Gas bubbler with PVC hose, charged with trap solution (EtOH/aq. $1 \mathrm{M} \mathrm{NaOH}, \mathrm{10:90}, \mathrm{v/v)}$	1
Graduated cylinder (10 mL)	1
Graduated cylinder (50 mL)	1
Erlenmeyer flask (50 mL)	1
Suction flask (500 mL), with rubber protection sleeve and rubber gasket, connected to vacuum trap	1
Vacuum trap, connected to vacuum module	1
Glass filter crucible (8 mL)	1
Separatory funnel (50 mL) with plastic stopper	1
Glass funnel	1
TLC elution chamber with lid	1
TLC plate, in the ziplock bag labeled "TLC + [student code]"	1

Practical

TLC capillary	6
Vials (4 mL), labeled "TLC-SM", "TLC-A", and "TLC-B"	3
Vial (20 mL), labeled "Product A + [student code]"	1
Vials $(20 \mathrm{~mL})$, labeled "SM-A", "SM-B", "Bleach-A", "Bleach-B", "AcOH", "NaOH (aq)", "NaHSO3 (aq)", "Na2SO4"	8
Bottles (50 mL), labeled "Eluent", "Toluene", and "2 M HCI"	3
Volumetric flask (50 mL), labeled "Product B + [student code]"	1
Pasteur pipette	12
Beaker (100 mL)	1
Spatula (large)	1
Spatula (small)	1
Tweezers	1
Joint clip	1
Cork ring	1
pH Indicator strip, in the ziplock bag labeled "TLC +[student code]"	10
Filter paper	1
Pencil	1
Ruler	1
Squeeze wash bottle for acetone (500 mL)	1
Bottle for aqueous waste (250 mL), labelled "Waste (aq)", pre-charged with Na, S2 S	
Bottle for organic waste (100 mL), labelled "Waste (org)"	1
Weighing paper	1

Shared equipment	Quantity (per lab, 20 capita)
UV lamp	1
Magnetic stir bar remover	2
Crushed ice, bucket	2

Practical

Problem 2: Titration Tango

Chemical	State	Comment	GHS Hazard Statements
$\mathrm{CaCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}$	Solid	in vial labeled "CaCl2.2H2O + [student code] + [mass]"	$\begin{aligned} & \text { H319; P264, P280, P305 + P351 + } \\ & \text { P338, P337 + P313 } \end{aligned}$
Distilled water	Liquid	In wash bottle labeled "dest. Wasser"	Not a hazardous substance or mixture according to Regulation (EC) No. 1272/2008
EDTA standard soIution (10.0 mM)	Liquid	500 mL , in PE bottle labeled "EDTA"	$\begin{aligned} & \text { H290, H314, H335; P234, P261, P271, } \\ & \text { P280, P303 + P361 + P353, P305 + } \\ & \text { P351 + P338 } \end{aligned}$
0.1 M HCl	Liquid	10 mL , corrosive, in vial labeled "0.1 M HCI"	H290; P234, P390
Sample (mixture), dissolved in HCl , $\mathrm{pH}=1$	Liquid	in vial labeled "Sample + [student code] + [mass]", corrosive	$\begin{aligned} & \text { H290, H319; P234, P264, P280, P305 } \\ & \text { + P351 + P338, P337 + P313, P390 } \end{aligned}$
Eriochrome ${ }^{\circledR}$ Black T (1 wt. \% in $\mathrm{NaCl})$	Solid	1 g , indicator, in vial labeled "Erio T"	$\begin{aligned} & \text { H319, H411; P264, P273, P280, P305 } \\ & + \text { P351 + P338, P337 + P313, P391 } \end{aligned}$
Variamine Blue (1 wt. \% in NaCl)	Solid	1 g , indicator, in vial labeled "Variamine"	$\begin{aligned} & \text { H302, H312, H332; P264, P270, P301 } \\ & \text { + P312, P330, P501, P280, P302 + } \\ & \text { P352, P312, P322, P363, P261, P271, } \\ & \text { P304 + P340 } \end{aligned}$
Schwarzenbach buffer $(\mathrm{pH}=10$, $\left.c_{\mathrm{HB}+}+c_{\mathrm{B}}=8.8 \mathrm{M}\right)$	Liquid	10 mL , containing $\mathrm{NH}_{4} \mathrm{Cl}$ and NH_{3}, in vial labeled "Buffer"	H302, H314, H319, H335, H410; P261, P264, P270, P271, P273, P280, P303 + P361 + P353, P305 + P351 + P338, P310 + P312, P337 + P313
Ethanol	Liquid	200 mL , flammable, in 250 mL bottle labeled "EtOH"	$\begin{aligned} & \text { H225, H319; P210, P233, P240, P241, } \\ & \text { P242, P305 + P351 + P338 } \end{aligned}$

Practical

55 ${ }^{\text {TH }}$ INTERNATIONAL CHEMISTRY OLYMPIAD SWITZERLAND 2023

Item	Count
20 mL vial	6, labeled "CaCl2.2H2O + [student code] + [mass]", "0.1 M HCl", "Erio T", "Sample + [stu- dent code] + [mass]", "Variamine", "Buffer"
Volumetric flask (100 mL)	1
Volumetric flask (250 mL)	1
Small funnel, fitting the burette	1
Spatula	1
Erlenmeyer flask (300 mL)	3
Volumetric pipette (5.0 mL)	1
Pipette bulb	1
Graduated cylinder (50 mL)	1
Glass Pasteur pipette	4
Burette (50 mL)	1
Laboratory stand with burette holder	1
PE bottle (500 mL), labeled "EDTA"	1
Bottle (250 mL), labeled "EtOH")	1
Beaker (50 mL)	1
Volumetric pipette (20.0 mL)	1
Beaker (1000 mL), labeled "Waste (P2)"	1

Practical

Problem 3: Beauty in Simplicity

| Chemical | State | Comment | GHS Hazard Statements |
| :--- | :--- | :--- | :--- | :--- |
| Solutions S1-S6 | Liquid | Corrosive, in vials labeled
 "S1"/"S2"/"S3"/"S4"/"S5"/"S6"
 + "[student code]" | H272, H290, H301, H302, H3144,
 H315, H318, H319, H332, H335,
 H373, H400, H410, H411 |

Item	Count
Bottle (100 mL), labeled "Waste (P3)"	1
Sample vials (20 mL), "S1"/"S2"/"S3"/"S4"/"S5"/"S6" code]"	Iabeled "[student
Test tubes	6
Glass Pasteur pipettes	18
Test tube rack	10

Equipment shared among all problems

Personal Equipment for all Problems	Quantity
Pen, in box "P3"	1
Felt pen, in box "P3"	1
Rubber bulb for Pasteur pipettes, in box "P3"	3
Protective gloves	$(\mathrm{S}, \mathrm{M}, \mathrm{L}, \mathrm{XL})$ available upon request to lab assis- tant
Paper towel roll	1
Squeeze wash bottle for water $(500 \mathrm{~mL})$, to be refilled w/o penalty at any time	1

Practical

Bleach, a Chameleonic Reagent

16% of total													
Question	Yield A	$\begin{aligned} & \text { TLC } \\ & \mathbf{A} \end{aligned}$	Deductions A	Yield B	$\begin{aligned} & \text { TLC } \\ & \text { B } \end{aligned}$	Deductions B	1.1	1.2	1.3	1.4	1.5	1.6	Total
Points	25	3	-6	25	3	-25	4	2	2	2	2	2	70
Score													

Experimental Procedure

Legend for translation: Bleach, p-methoxyacetophenone, major product

Preparation of Product A

1. Turn on the magnetic stirrer hotplate and set the control knob between $100^{\circ} \mathrm{C}$ and $150{ }^{\circ} \mathrm{C}$ in order to reach the desired water bath temperature of $70-80^{\circ} \mathrm{C}$. While stirring, control the temperature of the water bath with a thermometer clamped to the stand.
2. While the water bath is heating up, take a small sample (small spatula tip) of p-methoxyacetophenone from the vial labeled "SM-A", transfer it to the vial labeled "TLC-SM" and set it aside for thin layer chromatography (TLC) analysis (to be carried out after the preparation of product B).
3. To a 50 mL round-bottom flask, add a stir bar (olive-shaped), p-methoxyacetophenone (500 mg , entire content of the vial labeled "SM-A", a weighing paper may be used for the transfer), NaOH (aq) (6.7 mL , entire content of the vial labeled " $\mathbf{N a O H}(\mathbf{a q})^{\prime}$ "), and bleach (7.5 mL , entire content of the vial labeled "Bleach-A").
4. Clamp the flask to the stand and lower it into the water bath by adjusting the position of the clamp. Make sure the reaction mixture is stirring rapidly (ca. 750 rpm).

Practical

5. Attach a Vigreux column to the flask (Figure 1). To the top of the Vigreux column, attach the bent hose adapter which is connected via tubing to a gas bubbler (filled with a trap solution of NaOH in $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O}$). Secure the joint with a clip.
6. Let the reaction run at $70-80^{\circ} \mathrm{C}$ for 60 minutes.

Figure 1: 1 = Laboratory stand, 2 = water bath, 3 = clamp holder with clamp, 4 = thermometer, $5=$ gas bubbler, $6=$ tubing, $7=$ hose adapter with inner ground glass joint, $8=$ joint clip, $9=$ Vigreux column, 10 = round-bottom flask, 11 and 12 = magnetic stir bar, 13 = magnetic stirrer with hotplate
7. Turn off the heating, raise the flask above the water bath by adjusting the position of the clamps. Raise the technical assistance card for the removal of the water bath by an assistant. Allow the mixture to cool down while stirring and proceeding with the next steps.
8. Disconnect the gas bubbler from the Vigreux column by removing the bent hose adapter. Remove the Vigreux column (it will be reused in the preparation of product B).
9. Ask a lab assistant for crushed ice and cool the reaction flask in an ice-water bath while stirring (ca. 5 minutes).
10. With the flask still in the ice-water bath, slowly add NaHSO_{3} solution (aq, 40\%) (ca. 5 mL from the vial "NaHSO3 (aq)"; 1 mL corresponds to $1 / 22$ Pasteur pipette, see Figure 2) with a Pasteur pipette. Keep stirring. A white precipitate (product A) will form.

Practical

Figure 2: Pasteur pipette with approximate volume indications (scale 1:2)
11. Adjust the pH to $1-2$ by adding $2 \mathrm{M} \mathrm{HCl}(\mathrm{aq})$ (ca. $6-8 \mathrm{~mL}$, from the screw cap glass bottle labeled " $\mathbf{2} \mathbf{~ M ~ H C l ~ (a q) ") ~ w i t h ~ a ~ P a s t e u r ~ p i p e t t e . ~ C h e c k ~ t h e ~} \mathrm{pH}$ of the reaction mixture, using pH indicator strips (for reference color pattern see Figure 3). To do so, withdraw a small aliquot of the reaction mixture with a fresh Pasteur pipette and drip a drop onto a pH indicator strip, do not dip the strips into the reaction mixture. Continue adding HCl until $\mathrm{pH} \approx 1-2$, then stop.

Figure 3: Color scale for pH determination by visual comparison with the reaction zones on the indicator strips. The pH values are the numbers indicated on the left. All four reaction zones on the pH paper strip have to match the color scale at a given pH value. You may ask your lab assistant to see the commercial product with the color scale printed on it.

Practical

12. Ask a lab assistant for a magnetic stir bar remover, turn off the stirrer and remove the stir bar from the flask. Clean the stir bar by rinsing it first with water (\rightarrow "Waste (aq)"), then with acetone (\rightarrow "Waste (org)") and dry it with a paper towel. It will be reused later.
13. Set up a vacuum filtration apparatus: Clamp the suction flask to the laboratory stand and make sure the conical rubber gasket is sitting on the rubber protection sleeve (Figure 4).

Figure 4: 1 = Glass filter crucible, 2 = conical rubber gasket, 3 = rubber protection sleeve, $4=$ towards vacuum, 5 = suction flask
14. Place the glass filter crucible onto the conical rubber gasket. Make sure it fits tightly.
15. Apply vacuum and pour the suspension of the solid to be filtered into the glass filter crucible. Depending on the amount of liquid, this needs to be done portionwise.
16. Wash the solid thoroughly with water ($2 \times 10 \mathrm{~mL}$; a measuring cylinder may be used).
17. Let air suck through the precipitate to remove most of the water (no more than 10 minutes), then turn off the vacuum and disconnect the vacuum source.
18. Set aside a small sample (1 small spatula tip) of product A in the glass vial labeled "TLC-A" for thin layer chromatography (TLC) analysis (to be carried out later).
19. Transfer the product from the glass filter crucible to the vial labeled "Product A + [student code]" with a spatula.

Practical

Q1-5
20. Cap the vial labeled "Product A + [student code]". At the end of the exam, it will be picked up by your lab assistant.
21. Dispose of the filtrate (suction flask) in the "Waste (aq)" bottle.

Preparation of product B

1. Take a fresh 50 mL round-bottom flask, add a magnetic stir bar (olive-shaped) and clamp the flask to the stand.
2. Add p-methoxyacetophenone (500 mg , entire content of the vial "SM-B", a weighing paper may be used for the transfer) and glacial acetic acid (4 mL , entire content of the vial "AcOH") to the flask.
3. While stirring, add bleach (4.0 mL , entire content of the vial "Bleach-B") dropwise over a period of $1-2$ minutes, using a Pasteur pipette.
4. Attach a Vigreux column to the flask.
5. Rapidly stir the reaction (750 rpm) at room temperature for 45 minutes.
6. Remove the Vigreux column and dropwise add aqueous sodium bisulfite solution (40\%) (ca. 3 mL , remaining content of the vial "NaHSO3 (aq)") to the mixture over a period of 1 minute, using a Pasteur pipette. Note that the mixture warms up during the addition.
7. Ask a lab assistant for a magnetic stir bar remover, turn off the stirrer and remove the stir bar from the flask.
8. Clamp a 50 mL separatory funnel to the stand. Add 10 mL of water (a measuring cylinder may be used).
9. Pour the reaction mixture from the round-bottom flask via a glass funnel into the separatory funnel.
10. Add toluene (ca. 10 mL , from the screw cap bottle "Toluene"; a measuring cylinder may be used), then remove the funnel.
11. Seal the separatory funnel with a stopper and shake it vigorously for a while. Make sure to interrupt shaking and to vent the funnel from time to time, with its spout pointing away from yourself and others.
12. Stop shaking, vent the funnel one more time, then clamp it to the stand. Remove the stopper and let the layers separate.

Practical

13. Drain the lower (aqueous) layer into the used reaction flask (round-bottom flask). Pour the top (organic) layer containing product B into a 50 mL Erlenmeyer flask.
14. Extract the aqueous phase two more times with toluene by repeating steps 9 to 13 twice. Collect the organic extracts in the same Erlenmeyer flask.
15. Rinse the glass funnel with acetone (\rightarrow "Waste (org)") and let it dry.
16. Add sodium sulfate (entire content of the vial "Na2SO4") to the Erlenmeyer flask with the combined organic extracts. Add a stir bar (rod-shaped) and stir the suspension for 3 minutes on the magnetic stirrer, then turn off the stirrer.
17. Let the glass funnel sit on a clamp and have its spout protrude into the volumetric flask labeled "Product B + [student code]". Place a filter paper into the glass funnel and wet it with a small amount of toluene using a Pasteur pipette.
18. Filter the contents of the Erlenmeyer flask into the volumetric flask "Product B + [student code]" (the solution does not reach the mark). Rinse the Erlenmeyer flask with toluene (ca. 5 mL), using the same Pasteur pipette, and pour the solvent into the filter.
19. With a Pasteur pipette, transfer 4 drops of your "product B" solution into the vial "TLC-B".
20. Stopper the volumetric flask. At the end of the exam, it will be picked up by your lab assistant.
21. Dispose of the aqueous phase collected in the reaction flask (\rightarrow "Waste (aq)").

Practical

Thin Layer Chromatography (TLC) Analysis

Figure 5: $\mathbf{S M}=$ starting material $=p$-methoxyacetophenone, $\mathbf{A}=$ product $\mathrm{A}, \mathbf{S M}+\mathbf{A}=\operatorname{co}-\mathrm{spot}$ of starting material and product $\mathbf{A}, \mathbf{B}=$ product $\mathbf{B}, \mathbf{S M}+\mathbf{B}=$ co-spot of starting material and product B.
1 = starting line, 2 = front line, 3 = position to write down your student code.

1. Prepare the elution chamber: Load it to a level of ca. 0.5 cm with the eluent (mixture hexane/EtOAc in a 80:20 ratio, screw cap bottle "Eluent") and cover it with the lid. If necessary, you can get extra eluent from your lab assistant without penalty.
2. Prepare your samples: Using a Pasteur pipette, add ca. 0.5 mL of eluent to each of the vials "TLCSM", "TLC-A", and "TLC-B" to dissolve/dilute the respective samples. Cap the vial "TLC-A" and shake it (ca. 0.5 minute) for faster dissolution.
3. Prepare a TLC plate (stationary phase: SiO_{2} on aluminium) for the analysis of product A (Figure 5, left): With pencil and ruler, gently draw the starting line ca. 1 cm above the bottom of the plate and mark the positions to spot 3 samples. Label them "SM" = starting material = p-methoxyacetophenone, " \mathbf{A} " = product A, and " $\mathbf{S M}+\mathrm{A}^{\prime \prime}=$ co-spot of SM and product A (both compounds are deposited on the same point of the TLC plate). On the top left of the plate, write down your Student Code.
4. Similarly prepare another TLC plate for the analysis of product B (Figure 5, right).

Practical

5. Using capillary spotters, spot the two TLC plates on the starting line according to the labeling just done (Figure 5). Use a different capillary for each sample. Wait until the solvents have evaporated and the spots are dry.
6. Develop the TLC plates (either simultaneously or one after the other): Using tweezers, insert the TLC plate(s) into the elution chamber and cover it with the lid. Let the eluent reach a level of $1-2 \mathrm{~cm}$ below the top of each plate. Remove the lid and, using tweezers, remove the plate(s) from the chamber. Mark the eluent front gently with a pencil and let the plate(s) air-dry.
7. Visualize the dry TLC plates under the UV lamp kept on a common bench. With a pencil, gently circle all visible spots.
8. Complete the templates on the answer sheet by sketching in the spots observed under the UV light. Use these sketches to answer the TLC-related questions on the answer sheet.

9. Carefully place your dry TLC plates into the zip lock bag with your student code. Avoid that the plates scratch each other.
10. Have the following items ready to be picked up by your lab assistant:

- The glass vial and the volumetric flask with your products. They are labeled with your student code and the designation of the respective product ("Product A + [student code]" and "Product B + [student code]").

Practical

- A zipped bag labeled with your student code and containing the two TLC plates (TLC analysis of products \mathbf{A} and \mathbf{B}).

Note added post festum: The elaboration of the present exam question was inspired by the following publication: C. E. Ballard, J. Chem. Educ. 2010, 87, 190. The yields of products A and B were determined by ${ }^{1} \mathrm{H}$-NMR spectroscopy and gas chromatography (GC), respectively, using internal standards.

Practical

Analytics - Reserved for administration (not to be filled by the participant)

```
Yield.A 25pt
```


TLC.A $3 p t$

Ded.A $\quad-6 \mathrm{pt}$

Yield.B 25pt

TLC.B 3pt

Ded.B $\quad-25 \mathrm{pt}$

Questions

Legend for translation: Bleach, p-methoxyacetophenone, major product

Answer each of the following questions by ticking the appropriate checkbox (1 correct answer per question; ambiguous answers will be marked as incorrect).
1.1 Answer questions a - d based on the above sketch of your TLC plates (stationary phase: SiO_{2} on aluminium; eluent: hexane/EtOAc in a 80:20 ratio). No points will be attributed if the sketch is not done.
a. Which of the two products is more polar, \mathbf{A} or \mathbf{B} ? Choose the correct answer.
b. Which of the following two compounds is more polar, product \mathbf{A} or the starting material (SM)? Choose the correct answer.
c. Does your product A contain some remaining starting material? Choose the correct answer.
d. Does your product B contain some remaining starting material? Choose the correct answer.
1.2 Identify the structure of product \mathbf{A} (empirical formula $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$). The possible 2 pt answers can be found of the answer sheet.
1.3 As apparent from the empirical formula of product $\mathbf{A}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}\right)$, a C_{1} (= one car-

2pt bon atom containing) fragment is cleaved off the starting molecule $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}\right)$ in the course of the formation of \mathbf{A}. After the reaction, the C_{1} fragment ends up containing chlorine. Identify its structure. The possible answers can be found on the answer sheet.
1.4 The formation of product \mathbf{A} is a redox reaction. 2 pt
a. In this reaction, which atom type (element) is affected by an increase in oxidation number? Choose the correct answer on the answer sheet.
b. In this reaction, which atom type (element) is affected by a decrease in oxidation number? Choose the correct answer on the answer sheet.
1.5 Identify the structure of product \mathbf{B} (empirical formula $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$). The possible 2 pt answers can be found on the answer sheet.
1.6 At some point in the synthesis of product $\mathbf{B}, \mathrm{NaHSO}_{3}(\mathrm{aq})$ is added to the reaction mixture. While serving its purpose, hydrogensulfite (HSO_{3}^{-}) undergoes a chemical reaction. Identify the resulting sulfur-containing species. Note that this question is not aimed at the protonation state of the resulting S-containing species (acid-base equilibria are ignored here). The possible answers can be found on the answer sheet.

Practical

Bleach, a Chameleonic Reagent - Answer Sheet

16\% of total													
Question	Yield A	$\begin{aligned} & \text { TLC } \\ & \mathbf{A} \end{aligned}$	Deductions A	Yield B	$\begin{aligned} & \text { TLC } \\ & \text { B } \end{aligned}$	Deductions B	1.1	1.2	1.3	1.4	1.5	1.6	Total
Points	25	3	-6	25	3	-25	4	2	2	2	2	2	70
Score													

Thin Layer Chromatography (TLC) Analysis

Templates for step 8 of the TLC analysis:

\square

Practical

Submitted Items

Product A	\square		
Product B	\square		
TLC A	\square		
TLC B	\square		
Signatures			Lab Assistant
		Student	

Analytics - Reserved for administration (not to be filled by the participant)
Yield.A (25 pt)

TLC.A (3 pt)

Ded.A (-6 pt)

Yield.B (25 pt)

TLC.B (3 pt)

Ded.B (-25 pt)

Practical

1chor.

Questions

Legend for translation: Bleach, p-methoxyacetophenone, major product

Answer each of the following questions by ticking the appropriate checkbox (1 correct answer per question; ambiguous answers will be marked as incorrect).
1.1 (4 pt)

Answer questions a-d based on the above sketch of your TLC plates (stationary phase: SiO_{2} on aluminium; eluent: hexane/EtOAc in a 80:20 ratio). No points will be attributed if the sketch is not done.
a. Which of the two products is more polar, \mathbf{A} or \mathbf{B} ? Choose the correct answer.
\square Product A
\square Product B
b. Which of the following two compounds is more polar, product A or the starting material (SM)? Choose the correct answer.
\square Product A
\square Starting Material
c. Does your product A contain some remaining starting material? Choose the correct answer.
\square Yes
d. Does your product B contain some remaining starting material? Choose the correct answer.
\square Yes
\square No
1.2 (2 pt)

Identify the structure of product \mathbf{A} (empirical formula $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}$):

\square

Practical

1.3 (2 pt)

As apparent from the empirical formula of product $\mathbf{A}\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{3}\right)$, a C_{1} fragment is cleaved off the starting molecule $\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}\right)$ in the course of the formation of \mathbf{A}. After the reaction, the C_{1} (= one carbon atom containing) fragment ends up containing chlorine. Identify its structure:

1.4 (2 pt)

The formation of product \mathbf{A} is a redox reaction.
a. In this reaction, which atom type (element) is affected by an increase in oxidation number? Choose the correct answer:
C
H
O
Cl
b. In this reaction, which atom type (element) is affected by a decrease in oxidation number? Choose the correct answer.
C
H
O
Cl
1.5 (2 pt)

Identify the structure of product \mathbf{B} (empirical formula $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2}$):

\square

\square

\square

\square

Practical

1.6 (2 pt)

At some point in the synthesis of product $\mathrm{B}, \mathrm{NaHSO}_{3}(\mathrm{aq})$ is added to the reaction mixture. While serving its purpose, hydrogensulfite $\left(\mathrm{HSO}_{3}^{-}\right)$undergoes a chemical reaction. Identify the resulting sulfur-containing species. Note that this question is not aimed at the protonation state of the resulting S-containing species (acid-base equilibria are ignored here).
HS^{-}
S_{8}
$\mathrm{HS}_{2} \mathrm{O}_{3}{ }^{-}$
HSO_{4}^{-}

Titration Tango

Points:

13% of total															
Question	Titration 1	Titration 2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	Total					
Points	30	40	5	4	4	2	1	2	2	90					
Score															

Introduction

Iron was historically mined and processed in 19 Swiss cantons, meeting local and regional demand. Evidence of this activity remains, particularly in the Swiss Jura. To produce iron and steel efficiently, knowledge of the composition of the iron ore is essential. A versatile method to analyze any metal in solution is the complexometric titration, pioneered by Prof. Gerold Schwarzenbach at ETH in the 1940s.

You are provided with a sample containing only hydrates of FeCl_{3} and CaCl_{2}, dissolved in aqueous HCl . This simulates an iron ore sample, which has been digested with hydrochloric acid. Your task is to determine the iron concentration and the overall composition of the sample by complexometric titrations.

Any aqueous waste of this task is considered to contain heavy metals and should be collected in the beaker labelled "Waste P2".

Procedure

Part I. Dilution of Unknown Iron Ore Sample

1. You are given a sample of ca. 1200 mg of simulated iron ore. The exact mass is written on the label of your vial. Report it in your Answer Sheet. The sample has already been dissolved in aqueous HCl of pH 1.
2. Prepare 100 mL of sample solution in the 100 mL volumetric flask using the whole content from the vial labelled "Sample + [student code]" and distilled water. You may use a funnel. This solution is called A. This solution will be used in part II and IV.

Part II. Direct Titration of Iron Ore Solution

3. Fill the burette with 10.0 mM EDTA solution, labelled as "EDTA". You may use a funnel and a beaker.

Practical

4. In a 300 mL Erlenmeyer flask:

- Add 5.00 mL of solution \mathbf{A} using a volumetric pipette;
- Add 10 drops of 0.1 M hydrochloric acid using a glass Pasteur pipette;
- Fill up to the 100 mL mark of your Erlenmeyer flask with distilled water;
- Add a small amount of variamine blue using a spatula.

5. Titrate the content of the Erlenmeyer flask until the solution becomes yellow. Record the titration volume \mathbf{V}_{1} in your Answer Sheet.
6. Discard the titrated content of the Erlenmeyer flask in the beaker labelled "Waste P2".
7. Repeat the procedure (steps $3-6$) as needed.
8. Report your final result in the last row on the Answer Sheet.

Part III. Titer preparation

9. You are given a sample of ca. 550 mg of pure calcium chloride dihydrate $\left(\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$. The exact mass is written on the label of your vial. Report it in the table in your Answer Sheet.
10. Prepare 250 mL of calcium chloride solution in the 250 mL volumetric flask using the whole sample of solid $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{MW}=147.0 \mathrm{~g} / \mathrm{mol})$ and distilled water. You may need a funnel to transfer the solid. This solution is called \mathbf{B}. It will be used in part IV.

Part IV. Indirect Titration of Iron Ore Solution

11. Empty the burette. Rinse the burette well with distilled water and then with solution B. You may use a beaker. Discard the rinse solutions in the beaker labelled "Waste P2".
12. Fill the burette with solution B. You may use a funnel and a beaker.
13. In a 300 mL Erlenmeyer flask, add:

- 5.00 mL of solution \mathbf{A} using a volumetric pipette;
- 40.0 mL of 10.0 mM EDTA solution, labelled as "EDTA", using a volumetric pipette;

Practical

- 10 drops of buffer solution using a glass Pasteur pipette (be careful when opening the buffer solution, as there can be evolution of ammonia);
- 25 mL of distilled water using a graduated cylinder;
- 30 mL of ethanol using a graduated cylinder.

Your sample may be turbid.
14. To the 300 mL Erlenmeyer flask, add a small amount of Eriochrome ${ }^{\circledR}$ Black T, from the vial labelled with "Erio T". Your sample should now be intense blue-green. Perform the titration immediately after the addition of the indicator.

Note: After addition of the indicator, the color will change to red after several minutes, regardless of the progress of the titration. At that point, the titration endpoint is no longer detectable.
15. Titrate the content of the Erlenmeyer flask until the solution turns grey. Record the titration volume $\mathbf{V}_{\mathbf{2}}$. Your expected volume is below 15 mL .
16. Discard the titrated content of the Erlenmeyer flask in the beaker labelled "Waste P2".
17. Repeat the procedure (steps $12-16$) as needed.
18. Report your final result in the last row on the Answer Sheet.

Titr. 1 30pt

Titr. 2 40pt

Practical

Questions

2.1 Provide the chemical formula of the resulting EDTA complex formed in the direct titration up to the equivalence point. The structure of EDTA is given below. In your chemical formula, abbreviate EDTA as " $\mathrm{H}_{\mathbf{4}} \mathbf{Y}$ ", its conjugate bases as " $\mathrm{H}_{3} \mathbf{Y}-\mathrm{l}, \mathrm{H}_{2} \mathbf{Y}^{2-1}$ etc.
Hint: Under these conditions, one of the metal ions in solution preferentially forms an EDTA complex.

Structure of EDTA (equivalent to $\mathbf{H}_{4} \mathbf{Y}$).
2.2 Calculate the mass percentage of iron(III) chloride (without water of crystalliza- 4pt tion), in $w t . \%$, of the provided sample. The molar mass of FeCl_{3} is $162.2 \mathrm{~g} / \mathrm{mol}$.
2.3 Calculate the mass percentage of calcium chloride (without water of crystalliza- 4pt tion), in $w t . \%$, of the provided sample. The molar mass of CaCl_{2} is $111.0 \mathrm{~g} / \mathrm{mol}$.
2.4 Calculate the mass percentage of water of crystallization, $w t . \%$, of the provided
sample.
2.5 Why is it necessary to keep the sample solution \mathbf{A} at $\mathrm{pH}<2$?

Identify the correct answer among the four choices below and fill in the corresponding checkbox in your Answer Sheet.
2.6 The solution you were given simulates the digestion of iron ore with concentrated HCl . Which of the following mixtures could be analyzed by the same procedure?

Identify the correct answer among the four choices below and fill in the corresponding checkbox in your Answer Sheet.

Practical

2.7 Why does the sample for the indirect titration show a color change from blue 2 pt to red regardless of the progress of the titration?

Identify the correct answer among the four choices below and fill in the corresponding checkbox in your Answer Sheet.

Practical

Titration Tango

13% of total															
Question	Titration 1	Titration 2	2.1	2.2	2.3	2.4	2.5	2.6	2.7	Total					
Points	30	40	5	4	4	2	1	2	2	90					
Score															

Procedure:

Part I. Dilution of Unknown Iron Ore Sample

> Mass of simulated iron ore [mg] (Report the value on the label)

Part II. Direct Titration of Iron Ore Solution

Analysis Nr.	$\mathbf{V}_{\mathbf{1}}[\mathrm{mL}]$
1	
2	
3	
Reported value $\mathrm{V}_{1}[\mathrm{~mL}]$	

Titr. 1 (30 pt)

Part III. Titer preparation

```
Mass of calcium chloride dihydrate [mg] (MW =
147.0 g/mol)
(Report the value on the label)
```


Practical

Part IV. Indirect Titration of Iron Ore Solution

Analysis Nr.	$\mathbf{V}_{\mathbf{2}}$ [mL$]$
1	
2	
3	
Reported value $\mathbf{V}_{\mathbf{2}}[\mathrm{mL}]$	

Titr. 2 (40 pt)

Practical

Questions

2.1 (5 pt)

Provide the chemical formula of the resulting EDTA complex formed in the direct titration up to the equivalence point. The structure of EDTA is given below. In your chemical formula, abbreviate EDTA as " $\mathrm{H}_{4} \mathbf{Y}$ ", its conjugate bases as " $\mathrm{H}_{3} \mathbf{Y}^{-1}$, " $\mathrm{H}_{2} \mathbf{Y}^{\mathbf{2 - "}}$ etc. Hint: Under these conditions, one of the metal ions in solution preferentially forms an EDTA complex.

Structure of EDTA (equivalent to $\mathbf{H}_{4} \mathbf{Y}$).

Practical

2.2 (4 pt)

Calculate the mass percentage of iron(III) chloride (without water of crystallization), in wt.\%, of the provided sample. The molar mass of FeCl_{3} is $162.2 \mathrm{~g} / \mathrm{mol}$.
wt. $\%\left(\mathrm{FeCl}_{3}\right)=$
2.3 (4 pt)

Calculate the mass percentage of calcium chloride (without water of crystallization), , in wt.\%, of the provided sample. The molar mass of CaCl_{2} is $111.0 \mathrm{~g} / \mathrm{mol}$.
wt. $\%\left(\mathrm{CaCl}_{2}\right)=$
2.4 (2 pt)

Calculate the mass percentage of water of crystallization, wt.\%, of the provided sample.
$w t . \%\left(\mathrm{H}_{2} \mathrm{O}\right)=$

Practical

1cho
2.5 (1 pt)

Why is it necessary to keep the sample solution \mathbf{A} at $\mathrm{pH}<2$?
Identify the correct answer among the four choices below.
To chemically stabilize Ca^{2+} in solutionTo chemically stabilize Fe^{3+} in solution
To reduce Ca^{2+} in solution
\square To reduce Fe^{3+} in solution
2.6 (2 pt)

The solution you were given simulates the digestion of iron ore with concentrated HCl . Which of the following mixtures could be analyzed by the same procedure?

Identify the correct answer among the four choices below.Hematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)+$ Limestone $\left(\mathrm{CaCO}_{3}\right)$Magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)+$ Chalcopyrite $\left(\mathrm{CuFeS}_{2}\right)$Ilmenite $\left(\mathrm{FeTiO}_{3}\right)+$ Goethite $(\mathrm{FeO}(\mathrm{OH})$)Siderite $\left(\mathrm{FeCO}_{3}\right)+$ Dolomite $\left(\mathrm{CaMg}\left(\mathrm{CO}_{3}\right)_{2}\right)$
2.7 (2 pt)

Why does the sample for the indirect titration show a color change from blue to red regardless of the progress of the titration?

Identify the correct answer among the four choices below.Reduction of Fe^{3+} EDTA complex by ethanolHydrolysis of Eriochrome ${ }^{\circledR}$ Black T under basic conditionsIrreversible ligand exchange of Fe^{3+} EDTA complex by Eriochrome® Black TEriochrome® Black T adsorption onto precipitated CaCO_{3}

Practical

Beauty in simplicity

11% of total				
Question	3.1	3.2	3.3	Total
Points	30	14	15	$\mathbf{5 9}$
Score				

Introduction

You are provided with 6 solutions S1-S6 (ca. 10 mL of each) of unknown composition. Solution Sx is labeled "[student code] + Sx", with \mathbf{x} going from 1 to 6 . Your task is to identify all cations and anions dissolved in these solutions.

Hints:

- There are 7 cations and 7 anions which have been introduced in aqueous solutions S1-S6 from the list:
- Cations: $\mathrm{Ag}^{+}, \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Fe}^{3+}, \mathrm{K}^{+}, \mathrm{Mn}^{2+}, \mathrm{Na}^{+} ;$
- Anions: $\mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{Cl}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{PO}_{4}^{3-}, \mathrm{S}^{2-}, \mathrm{SO}_{4}^{2-}$;
- 2 or 3 ions in total were introduced into each solution;
- Each of the ions was introduced only into one solution;
- Na^{+}and K^{+}are present together in the same solution;
- In some cases, it might take up to 15 minutes before a visible change occurs; fill in the table in question 3.1 with your final observations;
- Some solutions can get colored or attain some precipitate due to oxidation under air.

Practical

Questions

3.1 Perform the cross-reactions between solutions S1-S6. Fill in the first table of 30pt your answer sheet with your observations using these symbols:

- " \downarrow " for precipitation;
- " \uparrow " for gas evolution;
- " S" for colour change of the solution;
- " - " if there are no visible observations.

Report the colours of the precipitates using the following letters:

- "W " for white/colorless;
- " B " for black;
- " C" for colored.
3.2 Based on your observations and the above-mentioned hints, identify the ions 14pt in S1-S6. Fill in the second table in your answer sheet.
3.3 Write ionic equations of the performed reactions that explain your observa-

15pt tions in the third table of your answer sheet. Use " \downarrow " for precipitates and " \uparrow " for gases.

Practical

Beauty in simplicity

11% of total				
Question	3.1	3.2	3.3	Total
Points	30	14	15	$\mathbf{5 9}$
Score				

Practical

3.1 (30 pt)

Perform the cross-reactions between solutions S1-S6. Fill in the table below with your observations using these symbols:

- " \downarrow " for precipitation;
- " \uparrow " for gas evolution;
- "S" for colour change of the solution;
- " - " if there are no visible observations.

Report the colours of the precipitates using the following letters:

- "W " for white/colorless;
- " B " for black;
- "C" for colored.

Solutions	S2	S3	S4	S5	S6
S1					
S2					
S3					
S4					

Practical

3.2 (14 pt)

Based on your observations and the hints given in the question sheet, identify the ions in S1-S6 and fill in the table below.

Solution	Cation(s)	Anion(s)
S1		
S2		
S3		
S4		
S5		
S6		

3.3 (15 pt)

In the table below, write the ionic equations of the performed reactions that explain your observations. Use " \downarrow " for precipitates and " \uparrow " for gases.

Combination	Ionic Reaction Equation(s)
$\mathbf{S 1 + S 2}$	

Practical

3.3 (cont.)

Combination	Ionic Reaction Equation(s)
S1+S3	
S1+S4	
S1+S5	
S1+S6	
S2+S4	

Practical

3.3 (cont.)

Combination	Ionic Reaction Equation(s)
S2+S6	
S3+S4	
S3+S5	
S3+S6	
S4+S6	

